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a b s t r a c t 

Crater count equilibrium occurs when new craters form at the same rate that old craters are erased, such 

that the total number of observable impacts remains constant. Despite substantial efforts to understand 

this process, there remain many unsolved problems. Here, we propose an analytical model that describes 

how a heavily cratered surface reaches a state of crater count equilibrium. The proposed model formu- 

lates three physical processes contributing to crater count equilibrium: cookie-cutting (simple, geometric 

overlap), ejecta-blanketing, and sandblasting (diffusive erosion). These three processes are modeled using 

a degradation parameter that describes the efficiency for a new crater to erase old craters. The flexibility 

of our newly developed model allows us to represent the processes that underlie crater count equilibrium 

problems. The results show that when the slope of the production function is steeper than that of the 

equilibrium state, the power law of the equilibrium slope is independent of that of the production func- 

tion slope. We apply our model to the cratering conditions in the Sinus Medii region and at the Apollo 15 

landing site on the Moon and demonstrate that a consistent degradation parameterization can success- 

fully be determined based on the empirical results of these regions. Further developments of this model 

will enable us to better understand the surface evolution of airless bodies due to impact bombardment. 

© 2017 Elsevier Inc. All rights reserved. 
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1. Introduction 

A surface’s crater population is said to be in equilibrium when

the terrain loses visible craters at the same rate that craters are

newly generated (e.g., Melosh, 1989, 2011 ). Since the Apollo era, a

number of studies have been widely conducted that have provided

us with useful empirical information about crater count equilib-

rium on planetary surfaces. In a cumulative size-frequency distri-

bution (CSFD), for many cases, the slope of the equilibrium state

in log-log space ranges from −1.8 to −2.0 if the slope of the crater

production function is steeper than −2 ( Gault, 1970; Hartmann,

1984; Chapman and McKinnon, 1986; Xiao and Werner, 2015 ). 

When new craters form, they erase old craters. There are three

crater erasure processes that primarily contribute to crater count

equilibrium ( Fig. 1 ). The first process is cookie-cutting, in which

a new crater simply overlaps old craters. Complete overlap can

erase the craters beneath the new crater. However, if overlapping

is incomplete, the old craters may be still visible because the rim

size of the new crater strictly restricts the range of cookie-cutting.

Cookie-cutting is a geometric process and only depends on the

area occupied by new craters. 
∗ Corresponding author. 
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However, because craters are not two-dimensional circles but

hree-dimensional depressions, cookie-cutting is ineffective when

 newly-formed crater is smaller than a pre-existing crater beneath

t. The second process considers this three-dimensional effect. This

rocess is sometimes called sandblasting, 1 which happens when

mall craters collectively erode a large crater by inducing downs-

ope diffusion, thus filling in the larger depression over time ( Ross,

968; Soderblom, 1970; Fassett and Thomson, 2014 ). 

Lastly, blanketing by ejecta deposits covers old craters outside

he new crater rim (e.g., Fassett et al., 2011 ). The thickness of ejecta

lankets determines how this process contributes to crater count

quilibrium. However, it has long been noted that they are rela-

ively inefficient at erasing old craters ( Woronow, 1977 ). For these

easons, this study formulates the ejecta-blanketing process as a

eometric overlapping process (like cookie-cutting) and neglects it

n the demonstration exercise of our model. 

To our knowledge, Gault (1970) is the only researcher known

o have conducted comprehensive laboratory-scale demonstrations

or the crater count equilibrium problem. In a 2.5-m square box

lled 30-cm deep with quartz sand, he created six sizes of craters

o generate crater count equilibrium. The photographs taken during
1 Earlier works called this process small impact erosion ( Ross, 1968; Soderblom, 

970 ). Here, we follow the terminology by Minton et al. (2015) . 

http://dx.doi.org/10.1016/j.icarus.2016.12.032
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a. Cookie cutting 

c. Blanketing process

Time

b. Sandblasting process

Fig. 1. A schematic plot of the processes that make craters invisible. (a) The cookie- 

cutting process, where each new crater overprints older craters. (b) The sandblast- 

ing process, where multiple small craters collectively erode a larger crater. (c) The 

blanketing process, where ejecta from a new crater buries old craters. The brown 

circle with the solid line shows ejecta blankets. The gray circles with the solid lines 

indicate fresh craters, and the gray circles with the dashed lines describe partially 

degraded craters. (For interpretation of the references to color in this figure legend, 

the reader is referred to the web version of this article.) 
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2 For notational simplification, we define the slopes as positive values. 
he experiments captured the nature of crater count equilibrium

Fig. 5 in Gault (1970) ). His experiments successfully recovered the

quilibrium level of crater counts observed in heavily cratered lu-

ar terrains. 

Earlier works conducted analytical modeling of crater count

quilibrium ( Marcus, 1964, 1966, 1970; Ross, 1968; Soderblom,

970; Gault et al., 1974 ). Marcus (1964, 1966, 1970) theoretically

xplored the crater count equilibrium mechanism by considering

imple circle emplacements. The role of sandblasting in crater ero-

ion was proposed by Ross (1968) , followed by a study of sand-

lasting as an analog of the diffusion problem ( Soderblom, 1970 ).

ach of these models addressed the fact that the equilibrium slope

as found to be 2, which does not fully capture the observed

lope described above. Gault et al. (1974) also developed a time-

volution model for geometric saturation for single sized craters. 

Advances in computers have made Monte-Carlo simulation

echniques popular for investigating the evolution of crater count

quilibrium. Earlier works showed how such techniques could

escribe the evolution of a cratered surface ( Woronow, 1978 ).

ince then, the techniques have become more sophisticated and

ave been capable of describing complicated cratering processes

 Hartmann and Gaskell, 1997; Marchi et al., 2014; Richardson,

009; Minton et al., 2015 ). Many of these Monte Carlo codes rep-

esent craters on a surface as simple circles or points on a rim

 Woronow, 1977; 1978; Chapman and McKinnon, 1986; Marchi

t al., 2014 ). The main drawback of the earlier analytical mod-

ls and some Monte-Carlo techniques that simply emplaced cir-

les was that crater erasure processes did not account for the

hree-dimensional nature of crater formation. As cratering pro-

eeds, diffusive erosion becomes important ( Fassett and Thom-

on, 2014 ). Techniques that model craters as three-dimensional to-
ographic features capture this process naturally ( Hartmann and

askell, 1997; Minton et al., 2015 ); however, these techniques are

omputationally expensive. 

Here, we develop a model that accounts for the overlapping

rocess (cookie-cutting and ejecta-blanketing) and the diffusion

rocess (sandblasting) to describe the evolution of crater count

quilibrium while avoiding the drawbacks discussed above. Similar

o Marcus (1964, 1966, 1970) , we approach this problem analyti-

ally. In the proposed model, we overcome the computational un-

ertainties and difficulties that his model encountered, such as his

omplex geometrical formulations. Because the proposed model

as an analytical solution, it is efficient and can be used to investi-

ate a larger parameter space than numerical techniques. Although

 recent study reported a model of the topographic distribution

f cratered terrains, which have also reached crater count equilib-

ium at small crater sizes, on the Moon ( Rosenburg et al., 2015 ),

he present paper only focuses on the population distribution of

raters. We emphasize that the presented model is a powerful tool

or considering the crater count equilibrium problem for any air-

ess planets. In the present exercise, we consider a size range be-

ween 0 and ∞ to better understand crater count equilibrium. Also,

lthough the crater count equilibrium slope may potentially de-

end on the crater radius, we assume that it is constant. 

We organize the present paper as follows. In Section 2 , we in-

roduce a mathematical form that describes the produced crater

SFD derived from the crater production function. Section 3 pro-

ides the general formulation of the proposed model. This form

ill be related to the form derived by Marcus (1964) but will

e more flexible to consider the detailed erasure processes. In

ection 4 , we derive an analytical solution to the derived equa-

ion. In Section 5 , we apply this model to the crater count equilib-

ium problems of the Sinus Medii region and the Apollo 15 landing

ite on the Moon, and demonstrate how we can use observational

rater counts to infer the nature of the crater erasure processes. 

. The produced crater CSFD 

To characterize crater count equilibrium, we require two popu-

ations: the crater production function and the produced craters.

he production function is an idealized model for the popula-

ion of craters that is expected to form on a terrain per time

nd area. In this study, we use a CSFD to describe the produced

raters. The crater production function in a form of CSFD is given

y Crater Analysis Techniques Working Group (1979) as 

 (≥r) = σ ˆ x r −η, (1) 

here η is the slope, 2 σ is a constant parameter with units of

 

η−2 s −1 , ˆ x is a cratering chronology function, which is defined

o be dimensionless (e.g., for the lunar case, Neukum et al., 2001 ),

nd r is the crater radius. For notational simplification, we choose

o use the radius instead of the diameter. 

In contrast, the produced craters are those that actually formed

n the surface over finite time in a finite area. If all the produced

raters are counted, the mean of the produced crater CSFD over

any samplings is obtained by factorizing the crater production

unction by a given area, A , and by integrating it over time, t . We

rite the produced crater CSFD as 

 t(≥r) = Aσ r −η

∫ t 

0 

ˆ x dt = Aξ r −η

∫ t 

0 

xdt = AξX r −η, (2) 

here 

= σ

∫ t s 

ˆ x dt [m 

η−2 ] , (3) 
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x = 

ˆ x ∫ t s 
0 

ˆ x dt 
[s −1 ] , (4)

X = 

∫ t 

0 

xdt. (5)

Consider a special case that the cratering chronology function is

constant, for example, ˆ x = 1 . For this case, x = 1 /t s and X = t/t s . In

these forms, t s can be chosen arbitrarily. For instance, it is con-

venient to select t s such that Aξ r −η recovers the produced crater

CSFD of the empirical data at X = 1 . Also, we set the initial time

as zero without losing the generality of this problem. Later, we use

x and X in the formulation process below. 

Given the produced crater CSFD, C t ( ≥ r ) , the present paper con-

siders how the visible crater CSFD, C c ( ≥ r ) , evolves over time. The

following sections shall omit the subscript, ( ≥ r ), from the visible

crater CSFD and the produced crater CSFD to simplify the nota-

tional expressions. 

3. Development of an analytical model 

3.1. The concept of crater count equilibrium 

We first introduce how the observed number of craters on a

terrain subject to impact bombardment evolves over time. The

most direct way to investigate this evolution would be to count

newly generated and erased craters over some interval of time.

This is what Monte Carlo codes, like CTEM, do ( Richardson, 2009;

Minton et al., 2015 ). In the proposed model, the degradation pro-

cesses are parameterized by a quantity that describes how many

craters are erased by a new crater. We call this quantity the degra-

dation parameter. 

Consider the number of visible craters of size i on time step

s to be N 

s 
i 
. We assume that the production rate of craters of this

size is such that exactly one crater of this size is produced in each

time step. In our model, we treat partial degradation of the craters

by introducing a fractional number. Note that because we do not

account for the topological features of the cratered surface in the

present version, this parameter does not distinguish degradation

effects on shapes such as a rim fraction and change in a crater

depth. This consideration is beyond our scope here. For instance, if

N 

2 
i 

= 1 . 5 , this means that at time 2, the first crater is halfway to

being uncounted. 3 If there is no loss of craters, N 

s 
i 

should be equal

to s . When old craters are degraded by new craters, N 

s 
i 

becomes

smaller than s . We describe this process as 

N 

s 
i = N 

s −1 
i 

+ 1 − �i k 
s 
i N 

s −1 
i 

, (6)

where k s 
i 

is the degradation parameter describing how many

craters of size i lose their identities (either partial or in full) on

time step s , and �i is a constant factor that includes the produced

crater CSFD and the geometrical limits for the i th-sized craters. In

the analytical model, we average k s 
i 

over the total number of the

produced craters. This operation is defined as 

k i = 

∑ s max 

s =1 k 
s 
i 
N 

s −1 
i ∑ s max 

s =1 N 

s −1 
i 

. (7)

Eq. (7) provides the following form: 

N 

s 
i = N 

s −1 
i 

+ 1 − �i k i N 

s −1 
i 

. (8)

In the following discussion, we use this averaged value, k i , and

simply call it the degradation parameter without confusion. 
3 Because N 0 
i 

= 0 , at time 1 there is only one crater emplaced. 

t  

p  

E  
.2. The case of a single sized crater production function 

To help develop our model, we first consider a simplified case

f a terrain that is bombarded only by craters with a single radius.

his case is similar to the analysis by Gault et al. (1974) . We con-

ider the number of craters, instead of the fraction of the cratered

rea that was used by Gault et al. (1974) . 

Consider a square area in which single sized craters of radius,

 i , are generated and erased over time. n i is the number of the

roduced craters, A is the area of the domain, N i is the number of

isible craters at a given time, and N 0, i is the maximum number

f visible craters of size i that is possibly visible on the surface

geometric saturation). In the following discussion, we define the

ime-derivative of n i as ˙ n i . N i is the quantity that we will solve,

nd N 0, i is defined as 

 0 ,i = 

Aq 

π r 2 
i 

, (9)

here q is the geometric saturation factor, which describes the

ighest crater density that could theoretically be possible if the

raters were efficiently emplaced onto the surface in a hexagonal

onfiguration ( Gault, 1970 ). For single sized circles q = π/ 2 
√ 

3 ∼
 . 907 . 

The number of visible craters will increase linearly with time

t rate, ˙ n i , at the beginning of impact cratering. After a certain

ime, the number of visible craters will be obliterated with a rate

f k i ̇ n i N i /N 0 ,i , where N i / N 0, i means the probability that a newly

enerated crater can overlap old craters. For this case, �i = ˙ n i /N 0 ,i ,

nd k i represents the number of craters erased by one new crater

t the geometrical saturation condition. This process provides the

rst-order ordinal differential equation, which is given as 

dN i 

dt 
= 

˙ n i − k i ̇ n i 

N i 

N 0 ,i 

. (10)

he initial condition is N i = 0 at t = 0 . The solution of Eq. (10) is

iven as 

 i = 

N 0 ,i 

k i 

{
1 − exp 

(
−k i n i 

N 0 ,i 

)}
, 

= 

Aq 

k i π r 2 
i 

[
1 − exp 

{
−k i π r 2 

i 
n i 

Aq 

}]
. (11)

To proceed further, we must understand the physical meaning

f the degradation parameter. Eq. (10) indicates that the degra-

ation parameter represents how many old craters are erased by

 new crater. Fig. 2 shows two examples that describe different

egradation parameters in the case of a single crater-size produc-

ion function. New craters are represented as gray circles, old visi-

le craters are white circles with solid borders, and lost old craters

re white circles with dashed borders. If k i is less than 1, more

ew craters are necessary to be emplaced to erase old craters. If

 i is larger than 1, one new crater can erase more than one old

rater. From Eq. (11) , as t → ∞ , N i reaches N 0, i / k i , not N 0, i . Thus,

ince N 0, i / k i ≤ N 0, i , k i ≥ 1. This means that the case described in

ig. 2 a, k i < 1, does not happen. 

.3. The case of a multiple crater size production function 

This section extends the single crater-size case to the mul-

iple crater-size case. In the analytical model by Marcus (1964,

966, 1970) , complex geometric considerations were necessary, and

here were many uncertainties. We will see that the extension of

ection 3.2 makes our analytical formulation clear and flexible so

hat the developed model can take into account realistic erasure

rocesses. We create a differential equation for this case based on

q. (10) , which states that for a given radius, the change rate of
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Fig. 2. The physical meaning of the degradation parameter for the case of a single sized crater production function. The gray circles are newly emplaced craters, while the 

white circles are old craters. The solid circles represent visible craters, and the dashed circles represent lost craters. (a) The case where 2 old craters were completely lost 

and several ones were partially erased after 10 new craters formed ( k i < 1). (b) The case where 8 old craters were completely lost and several ones were partially erased 

after 6 new craters formed ( k i ≥ 1). 
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c min  
isible craters is equal to the difference between the number of

ewly emplaced craters per time and that of newly erased craters

er time. 

We first develop a discretized model and then convert it into a

ontinuous model. In the discussion, we keep using the notations

efined in Section 3.2 . That is, for each i th crater, the radius is r i ,

he number of visible craters is N i , the maximum number of visible

raters in geometric saturation is N 0, i , the crater production rate

s ˙ n i , and the total number of the produced craters is n i . Craters

f size i are now affected by those of size j , and we define these

uantities for craters of size j in the same way. 

Modeling the degradation process of differently sized craters

tarts from formulating how the number of visible craters of one

ize changes due to craters of other sizes on each step. Fig. 3 shows

ow the number of visible craters changes based on the degrada-

ion processes that operate during the formation of new craters.

n this figure, we illustrate the cratering relation between small

raters and large craters to visualize the process clearly. For this

ase, there are three possibilities. First, new large craters erase

maller, older ones by either cookie-cutting or ejecta-blanketing

 Fig. 3 a). Second, new craters eliminate the same-sized craters by

ither cookie-cutting or ejecta-blanketing ( Fig. 3 b). Finally, new

mall craters can degrade larger ones through sandblasting or

jecta-blanketing ( Fig. 3 c). Fig. 3 d shows the total effect when all

ossible permutations are considered. 

Consider the change in the number of visible craters of size i .

he i th-sized craters are generated with the rate, n i , on every time

tep. This accumulation rate is provided as 

dN i 

dt 

∣∣∣∣
acc 

= 

˙ n i . (12) 

he present case requires consideration of differently sized craters.

he degradation parameter should vary according to the degrada-

ion processes of the j th-sized craters. To account for them ( Fig. 3 ),

e define the degradation parameter describing the effect of the

 th-sized craters on the i th-sized craters as k ij . Given the i th-sized

raters, we give the degradation rate due to craters of size j as 

dN i 

dt 

∣∣∣∣
deg, j 

= −k i j ˙ n j 

N i 

N 0 ,i 

r 2 
j 

r 2 
i 

. (13) 

n this equation, �i in Eq. (6) becomes dependent on craters of

ize j . By defining this function for this case as �ij , we write 

i j = 

˙ n j 

N 0 ,i 

r 2 
j 

r 2 
. (14) 
i 
 ij is a factor describing how effectively craters of size i are erased

y one crater of size j . For example, when k i j = 1 , r 2 
j 
/r 2 

i 
is the to-

al number of craters of size i erased by one crater of size j at

he geometric saturation condition. In the following discussion, we

onstrain k ij to be continuous over the range that includes r i = r j 
o account for the degradation relationships among any different

izes. 

Based on Eqs. (12) and (13) , we take into account both the ac-

umulation process and the degradation process. Considering the

ossible range of the crater size, we obtain the first-order differen-

ial equation for the time evolution of N i as 

dN i 

dt 
= 

dN i 

dt 

∣∣∣∣
acc 

+ 

i max ∑ 

j= i min 

dN i 

dt 

∣∣∣∣
deg, j 

, 

= 

˙ n i −
N i 

N 0 ,i 

i max ∑ 

j= i min 

k i j ˙ n j 

r 2 
j 

r 2 
i 

. (15) 

he summation operation on the right hand side means a sum

rom the largest craters to the smallest craters. Eq. (15) can de-

cribe visible craters that overlap each other ( Fig. 4 ). Similar to the

ingle-sized case, we set the initial condition such that N i = 0 at

 = 0 . The solution of this equation is written as 

 i = 

˙ n i 

π
Aq 

∑ i max 

j= i min 
k i j r 

2 
j 

˙ n j 

[ 

1 − exp 

( 

− π

Aq 

i max ∑ 

j= i min 

k i j r 
2 
j n j 

) ] 

. (16) 

As discussed in Section 2 , it is common to use the CSFDs to

escribe the number of visible craters. To enable this model di-

ectly to compare its results with the empirical data, we convert

q. (16) to a continuous form. k ij is rewritten as a continuous form,

 . We write the continuous form of r i and that of r j as r and ř , re-

pectively. We define C c as the CSFD of visible craters and rewrite

 i and n i as 

 i ∼ −dC c 

dr 
dr, n i ∼ −dC t 

dr 
dr, (17) 

espectively. Substitutions of these forms into Eq. (16) yields a dif-

erential form of the CSFD, 

dC c 

dr 
= −

d ̇ C t 
dr 

π
Aq 

∫ r max 

r min 

d ̇ C t 
d ̌r 

k ̌r 2 d ̌r 

[
1 − exp 

(
π

Aq 

∫ r max 

r min 

dC t 

d ̌r 
k ̌r 2 d ̌r 

)]
, (18) 

here r min and r max are the smallest crater radius and the largest

rater radius, respectively. The radius of the i min th-sized craters

nd that of the i max th-sized craters correspond to r min and r max , re-

pectively. Also, ˙ C t is the time-derivative of C t . In the following dis-

ussion, we will consider r → 0 and r max → ∞ after we model
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d. The total effect

a. The effect of large craters on small
 craters (cookie-cutting + blanketing) 

b. The effect of the same craters 
(cookie-cutting + blanketing)

c. The effect of the smaller craters on the 
larger craters (sandblasting + blanketing)

Fig. 3. Schematic plot of degradation processes for a crater production function with two crater sizes, large and small. The model accounts for three different cases to 

describe the total effect. (a) The effect of large craters on small craters. (b) The effect of the same-sized craters. (c) The effect of small craters on large craters. (d) The total 

effect obtained by summing the effects given in (a) through (c). The gray circles are new craters, the white circles with solid lines describe visible old craters, and the white 

circles with dashed lines indicate invisible old craters. 
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t  
the k parameter. Eq. (18) is similar to Eq. (47) in Marcus (1964) ,

which is the key equation of his sequential studies. The crater birth

rate, λ, and the crater damaging rate, μ, are related to −d ̇ C t /dr

and 

π
Aq 

∫ r max 
r min 

d ̇ C t 
d ̌r 

k ̌r 2 d ̌r , respectively. While his λ and μ included a

number of geometric uncertainties and did not consider the effect

of three dimensional depressions on crater count equilibrium, our

formulation overcomes the drawbacks of his model and provides

much stronger constraints on the equilibrium state than his model.

4. Analytical solutions 

4.1. Formulation of the degradation parameter 

To determine a useful form of the degradation parameter, k , we

start by discussing how this parameter varies as a function of ř .

If craters with a radius of ř are larger than those with a radius

of r , cookie-cutting and ejecta-blanketing are main contributors to

erasing the r -radius craters. In this study, we consider that cookie-

cutting and ejecta-blanketing are only related to the geometrical

relationship between craters with a radius of ř and those with a

radius of r . Cookie-cutting only entails the geometric overlap of

the r -radius craters; thus k should always be one. Ejecta-blanketing

makes additional craters invisible ( Pike, 1974; Fassett et al., 2011;

Xie and Zhu, 2016 ), so k is described by some small constant, α .
eb 
dding these values, we obtain the degradation parameter at ř ≥ r

s 1 + αeb . 

If craters with a radius of ř are smaller than those with a radius

f r , the possible processes that degrade the r -radius craters are

jecta-blanketing and sandblasting ( Fassett and Thomson, 2014 ).

or simplicity, we only consider the size-dependence of sandblast-

ng. It is reasonable that as ř becomes smaller, the timescale of

egrading the r -radius crater should become longer ( Minton et al.,

015 ). This means that with a small radius, the effect of new

raters on the degradation process becomes small. To account for

his fact, we assume that at ř < r, k increases as ř becomes large.

ere, we model this feature by introducing a single slope function

f ř /r whose power is a function of r . 

Combining these conditions, we define the degradation param-

ter as ( Fig. 5 ) 

 = 

{
(1 + αeb ) 

(
ř 
r 

)b(r) 
if ř < r, 

1 + αeb if ř ≥ r, 
(19)

here b ( r ) is a positive function changing due to r . We multiplied

 + αeb by the size-dependent term, ( ̌r /r) b(r) , at r < ̌r for conve-

iency. This operation satisfies the continuity at r = ̌r . 

We substitute the produced crater CSFD defined by Eq. (2) and

he degradation parameter given by Eq. (19) into the integral term
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a. The number of countable craters

b. The number of countable, small craters c. The number of countable, large craters

Fig. 4. Schematic plot for how the analytical model computes the number of visible craters for the multiple crater-size case. The model tracks the number of visible craters 

for each size and sums up that of all the considered sizes. In case small craters are emplaced on larger crates (e.g., the solid square), the model counts both sizes and sums 

it up to compute the CSFD. (a) The number of visible craters that the model is supposed to count. (b)and (c) The crater counting for each case. The light and dark gray 

circles show small and large craters, respectively. 

Fig. 5. Schematic plot of the degradation parameter in log-log space. The x axis in- 

dicates ̌r in a log scale, while the y axis shows the value of the degradation param- 

eter in a log scale. If ř ≥ r, k is always 1 + αeb because cookie-cutting and ejecta- 

blanketing are dominant. If ̌r < r, sandblasting and ejecta-blanketing are considered 

to be dominant. For this case, k is described as (1 + αeb )( ̌r /r) b(r) . The slope, b ( r ), 

changes as a function of r . 
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(  
n Eq. (18) . We rewrite the integral term of Eq. (18) as 

 r max 

r min 

dC t 

d ̌r 
k ̌r 2 d ̌r = −ηAξX (1 + αeb ) { ∫ r 

r min 

(
ř 

r 

)b(r) 

ř −η+1 d ̌r + 

∫ r max 

r 

ř −η+1 d ̌r 

} 

, 

= −ηAξX (1 + α ) 
eb 
[
r −η+2 

−η + 2 + b(r) 

{
1 −

(
r min 

r 

)−η+2+ b(r) 
}

+ 

r −η+2 

η − 2 

{
1 −

(
r max 

r 

)−η+2 
}]

. (20) 

or the case of ˙ C t that appears in the denominator of the fraction

erm in Eq. (18) , we can use the derivation process above by re-

lacing X by x (see Eq. (5) ). We have the similar operations below

nd only introduce the C t case without confusion. Note that the

econd operation in this equation is valid under the assumption

hat neither −η + 2 nor −η + 2 + b(r) is zero. Under this condition,

e examine whether or not Eq. (20) has a reasonable value at r min 

 0 and at r max → ∞ . Later, we will show that an additional con-

ition is necessary for b ( r ) for r min → 0. 

The term in the last row in Eq. (20) has (r max /r) −η+2 . If the

lope of the produced crater CSFD satisfies η − 2 > 0 , we obtain 

r max 

r 

)−η+2 

< 1 . (21) 

hus, when r max → ∞ , this term goes to zero. The term in the

econd to the last row in Eq. (20) provides constraints on how

he sandblasting process works to create the equilibrium states.

ince b ( r ) > 0 and η − 2 > 0 , the power of r min / r , −η + 2 + b(r) ,

an only take one of the following cases: negative (−η + 2 + b(r) <

) or positive (−η + 2 + b(r) > 0) . If −η + 2 + b(r) < 0 , the term,

(r min /r) −η+2+ b(r) , becomes ∞ at r min → 0. This condition yields C c 
 0 at r min → 0. We rule out this condition by conducting the

ollowing thought experiment. We assume that this case is true. In

ature, micrometeoroids play significant roles in crater degradation

 Melosh, 2011 ). Because we assumed that this case is true, there
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should be no craters on the surface. This result obviously contra-

dicts what we have seen on the surface of airless bodies (we see

craters!). 

The only possible case is the positive slope case, providing the

condition that the sandblasting effect leads to crater count equilib-

rium as b(r) > η − 2 . Since this case satisfies (
r min 

r 

)−η+2+ b(r) 

< 1 , (22)

Eq. (20) at r min → 0 and r max → ∞ is ∫ ∞ 

0 

dC t 

d ̌r 
k ̌r 2 d ̌r = −ηAξX (1 + αeb ) r 

−η+2 

(
1 

−η + 2 + b(r) 
+ 

1 

η − 2 

)
. (23)

Here, we also assume a constant slope of the equilibrium state.

To give this assumption, we find b ( r ) such that 

αsc r 
β = 

1 

−η + 2 + b(r) 
+ 

1 

η − 2 

, (24)

where αsc and β are constants. This form yields 

b(r ) = 

a sc r 
β (η − 2) 2 

αsc r β (η − 2) − 1 

. (25)

Using this β value, we rewrite Eq. (23) as ∫ ∞ 

0 

dC t 

d ̌r 
k ̌r 2 d ̌r = −ηAξX (1 + αeb ) αsc r 

−η+2+ β . (26)

4.2. Equilibrium state 

This section introduces the equilibrium slope at r min → 0 and

r max → ∞ . Impact cratering achieves its equilibrium state on a sur-

face when t → ∞ . Using Eqs. (18) and (26) , we write an ordinal

differential equation of the equilibrium state as 

dC ∞ 

c 

dr 
= −

d ˙ C t 

dr 

π

Aq 

∫ ∞ 

0 

d ˙ C t 

d ̌r 
k ̌r 2 d ̌r 

, 

= − Aq 

π(1 + αeb ) αsc 
r −3 −β . (27)

Integrating Eq. (27) from r to ∞ , we derive the visible crater CSFD

at the equilibrium condition as 

 

∞ 

c = −
∫ ∞ 

r 

dC c 

dr 
dr, 

= 

Aq 

π(1 + αeb ) αsc (2 + β) 
r −2 −β . (28)

Eq. (28) indicates that the fraction term on the right-hand side

is independent of ξ and η, and the equilibrium slope is simply

given as 2 + β . If β = 0 , the equilibrium slope is exactly 2. This

statement results from a constant value of b ( r ), the case of which

was discussed by Marcus (1970) and Soderblom (1970) . These re-

sults indicate that the equilibrium state is independent of the

crater production function and only dependent on the surface con-

dition. Therefore, a better understanding of the degradation param-

eter may provide strong constraints on the properties of cratered

surfaces, such as regional slope effects, material conditions, and

densities. 

We briefly explain the case of η − 2 < 0 . This would be a

“shallow-sloped” CSFD, such as seen in large crater populations

on heavily-cratered ancient surfaces. For this case, cookie-cutting

is the primary process that erases old craters ( Richardson, 2009 ).
onsidering that r min → 0 and r max becomes quite large ( 	 r ), we

se Eq. (20) to approximately obtain 

 r max 	r 

0 

dC t 

d ̌r 
k ̌r 2 d ̌r ∝ r 

−η+2 
max , (29)

hich is constant. Thus, from Eq. (28) , we derive 

 

∞ 

c ∝ C t . (30)

his equation means that the slope of the equilibrium state is pro-

ortional to that of the produced crater CSFD, which is consis-

ent with the arguments by Chapman and McKinnon (1986) and

ichardson (2009) . We leave detailed modeling of this case as a

uture work. 

.3. Time evolution of countable craters 

This section calculates the time evolution of the visible crater

SFD, C c . Substituting Eq. (28) into Eq. (18) yields 

dC c 

dr 
= − Aq 

π(1 + αeb ) αsc 
r −3 −β

×
[

1 − exp 

{
−πηξX 

q 
(1 + αeb ) αsc r 

−η+2+ β
}]

. (31)

ntegrating Eq. (31) from r to ∞ , we obtain 

 c = −
∫ ∞ 

r 

dC c 

dr 
dr, 

= 

Aq 

π(1 + αeb ) αsc (2 + β) 
r −2 −β

+ 

Aq 

π(1 + αeb ) αsc 

∫ ∞ 

r 

r −3 −β

× exp 

{
−πηξX 

q 
(1 + αeb ) αsc r 

−η+2+ β
}

dr. (32)

While the second row in this equation directly results from Eq.

28) , the third row needs additional operations. To derive the ana-

ytical form of the integral term, we introduce an incomplete form

f the gamma function, which is given as 

(a, Z) = 

∫ ∞ 

Z 

Z a −1 exp (−Z) dZ. (33)

e focus on the critical integral part of Eq. (32) , which is given

s 

f = 

∫ ∞ 

r 

r −3 −β exp 

(
−χ r −η+2+ β)

dr, (34)

here 

= 

πηξX 

q 
(1 + αeb ) αsc . (35)

To apply Eq. (33) to Eq. (34) , we consider the following rela-

ionships, 

 = 

χ

r η−2 −β
, (36)

 = 

(
χ

Z 

) 1 
η−2 −β

. (37)

q. (37) provides 

r = 

−1 

η − 2 − β

(
χ

Z 

) 1 
η−2 −β dZ 

Z 
. (38)

sing Eqs. (36) –(38) , we describe f as 
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Fig. 6. Comparison of the analytical results with the empirical data of the Sinus 

Medii region by Gault (1970) . The area plotted is 1 km 

2 . The red-edged circles 

are the empirical data. The blue and black lines show the CSFDs of the produced 

craters, C t , and that of the visible craters, C c , respectively. We plot the results at 

three different times: X = 0 . 001 , 0.05, and 1.0. The dashed line indicates the equi- 

librium condition. (For interpretation of the references to color in this figure legend, 

the reader is referred to the web version of this article.) 

Fig. 7. Variation in b ( r ) for the Sinus Medii case. The solid line shows b ( r ), which 

is given in Eq. (25) . The dotted line represents the minimum value of b ( r ), which is 

η − 2 = 1 . 25 for the Sinus Medii case. 

Fig. 8. Comparison of the analytical results with the empirical data of the Apollo 15 

landing region over an area of 1 km 

2 . C.I.F. counted craters on this region in Robbins 

et al. (2014) . The red-edged circles are the empirical data. The definitions of the line 

formats are the same as those in Fig. 6 . (For interpretation of the references to color 

in this figure legend, the reader is referred to the web version of this article.) 
f = − 1 

η − 2 − β

(
1 

χ

) 2+ β
η−2 −β

∫ 0 

Z 

Z 
2+ β

η−2 −β
−1 exp (−Z) dZ, 

= 

1 

η − 2 − β

(
1 

χ

) 2+ β
η−2 −β

γ

(
2 + β

η − 2 − β
, Z 

)
, (39) 

here γ ( ·, Z ) is called a lower incomplete gamma function. For the

urrent case, this function is defined as (
2 + β

η − 2 − β
, Z 

)
= 


(
2 + β

η − 2 − β

)
− 


(
2 + β

η − 2 − β
, Z 

)
, (40) 

here 
(·) = 
(·, 0) . We eventually obtain the final solution as 

 c = 

Aq 

π(1 + αeb ) αsc 

1 

2 + β
r −2 −β (41) 

+ 

Aq 

π(1 + αeb ) αsc 

1 

η − 2 − β

(
1 

χ

) 2+ β
η−2 −β

γ

(
2 + β

η − 2 − β
, Z 

)
. 

t an early stage, both the first term and the second term play

 role in determining C c , which should be close to the produced

rater CSFD. However, as the time increases, X also becomes large.

rom Eq. (34) , when X 	 1, f � 1, and thus the second term be-

omes negligible. This process causes C c to become close to C ∞ 

c . 

We introduce a special case of β = 0 and η = 3 . From Eq. (25) ,

 ( r ) becomes constant and is given as 

 = 

αsc 

αsc − 1 

. (42) 

q. (41) is simplified as 

 c = 

Aq 

2 π(1 + αeb ) αsc 
r −2 + 

Aq 

π(1 + αeb ) αsc 
χ−2 γ (2 , Z) , 

= 

Aq 

2 π(1 + αeb ) αsc 
r −2 + 

Aq 

π(1 + αeb ) αsc 
χ−2 

×
{ 

1 −
(

1 + 

χ

r 

)
exp 

(
−χ

r 

)} 

. (43) 

q. (42) shows that when αsc → 1, b → ∞ . However, the following

xercises show that αsc 	 1. 

. Sample applications 

We apply the developed model to the visible crater CSFD of

he Sinus Medii region on the Moon (see the red-edged circles

n Fig. 6 ) and that of the Apollo 15 landing site (see the red-

dged circles in Fig. 8 ). These locations are considered to have

eached crater count equilibrium. In these exercises, we obtain C t 
y considering the crater sizes that have not researched equilib-

ium, yet. Then, assuming that αeb = 0 , we determine αsc such that

 c matches the empirical datasets. 

.1. The Sinus Medii region 

Gault (1970) obtained this CSFD (see Fig. 14 in his paper), us-

ng the so-called nesting counting method. This method accounts

or large craters in a global region, usually obtained from low-

esolution images, and small craters in a small region, given from

igh-resolution images. In the following discussion, caution must

e taken to deal with the units of the degradation constants. 

Studies of the crater production function (e.g. Neukum et al.,

001) showed that a high slope region, which usually appears at

izes ∼ 100 m to ∼ 1 km might be similar to the produced crater

SFD. Here, we observed that such a steep slope appears between

100 m and ∼ 400 m on the Sinus Medii surface. By fitting this

igh slope, we obtain C t as 

 t = 2 . 5 × 10 

6 r −3 . 25 . (44) 
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Fig. 9. Variation in b ( r ) for the Apollo 15 landing site case. 
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C t for the Sinus Medii case is the produced crater CSFD for an area

of 1 km 

2 (we consider an area of 1 m 

2 to be the unit area), and

this quantity is dimensionless, and the 2.5 × 10 6 factor has units of

m 

3.25 . Since η = 3 . 25 > 2 , this case is the high-slope crater produc-

tion function. Based on this fitting function, we set X = 1 , ξ = 2 . 5

m 

1.25 , and A = 1 km 

2 . Also, we obtain the fitting function of the

equilibrium slope as 

 

∞ 

c = 4 . 3 × 10 

3 r −1 . 8 . (45)

Similar to C t , the units of the 4.3 × 10 3 factor are m 

1.8 . Fig. 6 com-

pares the empirical data with the time evolution of C c that is given

by Eq. (41) . We describe different time points by varying X without

changing ξ and A . It is found that the model captures the equilib-

rium evolution properly. 

By fitting C c with the empirical data, the present model can

provide constraints on the sandblasting exponent, b ( r ), of the

degradation parameter. To obtain this quantity, we determine αsc 

and β . Since αeb is assumed to be negligible, we write 1 + αeb ∼ 1 .

First, since −2 − β = −1 . 8 , we derive β = −0 . 2 . Second, operating

the units of the given parameters, we have the following relation-

ship, 

4 . 3 × 10 

3 [m 

1 . 8 ] = 

Aq 

π(2 + β) αsc 
= 

10 

6 [m 

2 ] × 0 . 907 

π(2 − 0 . 2) αsc [m 

0 . 2 ] 
. (46)

Then, we obtain 

αsc = 37 . 3 [m 

0 . 2 ] . (47)

Since the units of r β are m 

−0 . 2 , this result guarantees that Eq.

(25) consistently provides a dimensionless value of b ( r ). Using

these quantities, we obtain the variation in b ( r ). Fig. 7 indicates

that the obtained values of b ( r ) for the Sinus Medii satisfy the

sand-blasting condition, b(r) > η − 2 . For this case, which has a

constant slope index, b ( r ) monotonically increases. As newly em-

placed craters become smaller, they become less capable of erasing

a crater. These results imply that for a large simple crater, it would

take longer time for smaller craters to degrade its deep excavation

depth and its high crater rim. These results could be used to con-

strain models for net downslope material displacement by craters;

however, this is beyond our scope in this paper. 

5.2. The Apollo 15 landing site 

We also consider the crater equilibrium state on the Apollo

15 landing site. Co-author Fassett counted craters at this area in

Robbins et al. (2014) , and we directly use this empirical result. The

used image is a sub-region of M146959973L taken by Lunar Recon-

naissance Orbiter Camera Narrow-Angle Camera, the image size is

4107 × 2218 pixels, and the solar incidence angle is 77 ° ( Robbins

et al., 2014 ). The pixel size of the used image is 0.63 m/pixel. The

total domain of the counted region is 3.62 km 

2 , and the number

of visible craters is 1859. We plot the empirical data in Fig. 8 . To

make this figure consistent with Fig. 6 , we plot the visible crater

CSFD with an area of 1 km 

2 . In the following discussion, we will

show C t , C 
∞ 

c , and C c by keeping this area, i.e., A = 1 km 

2 , to make

comparisons of our exercises clear. 

For the Apollo 15 landing site, the steep-slope region ranges

from ∼ 50 m to the maximum crater radius, which is 131 m. The

fitting process yields 

 t = 2 . 2 × 10 

6 r −3 . 25 . (48)

This fitting process shows that C t of the Apollo 15 landing site is

consistent with that of the Sinus Medii case. Then, given A = 1

km 

2 , we obtain ξ = 2 . 2 m 

1.25 . We also set X = 1 for the condition

that fits the empirical dataset. C ∞ 

c is given as 

 

∞ 

c = 4 . 6 × 10 

3 r −1 . 8 . (49)
he units of the 4.6 × 10 3 factor are m 

1.8 . Fig. 8 shows comparisons

f the analytical model and the empirical data for the Apollo 15

anding site. We also obtain αsc and β . Again, αeb is assumed to

e zero. Since the slope of the equilibrium state is 1.8, we derive

= −0 . 2 . Similar to the Sinus Medii case, we calculate αsc for the

pollo 15 case as 34.9 m 

−0 . 2 . These quantities yield the variation

n b ( r ) ( Fig. 9 ). The results are consistent with those for the Sinus

edii case. 

. Necessary improvements 

Further investigations and improvements will be necessary as

e made five assumptions in the present study. First, we simply

onsidered the limit condition of the crater radius, i.e., r min → 0

nd r max → ∞ . However, this assumption neglects consideration

f a cut-off effect on crater counting. Such an effect may hap-

en when a local area is chosen to count craters on a terrain that

eaches crater count equilibrium. Due to this effect, lar ge craters

n the area may be accidentally truncated, and the craters counted

here may not follow the typical slope feature. Second, we ignored

he effect of ejecta-blanketing in our exercises. However, it is nec-

ssary to investigate the details for it to give stronger constraints

n the crater count equilibrium problem. Third, we assumed that

he equilibrium state is characterized by a single slope. However,

n earlier study has shown that the equilibrium slope could vary

t different crater sizes from case to case (e.g. Robbins et al., 2014) .

o adapt such complex equilibrium slopes, we require more so-

histicated forms of Eq. (24) . Fourth, the current version of this

odel does not distinguish crater degradation with crater oblitera-

ion. For example, if t � 1 in Eq. (41) , there is a chance that craters

ould be degraded due to sandblasting but not obliterated. At this

ondition, they all would be visible, while Eq. (41) predicts some

bliteration. Fifth, the measured crater radius can increase due to

andblasting, while the current model does not account for this ef-

ect. We will attempt to solve these problems in our future works.

We finally address that although we took into account cookie-

utting, ejecta-blanketing, and sandblasting as the physical pro-

esses contributing to crater count equilibrium in this study, we

ave not implemented the effect of crater counting on the degra-

ation parameter. According to Robbins et al. (2014) , the visibil-

ty of degraded craters could depend on several different factors:

harpness of craters, surface conditions, and image qualities (such

s image resolution and Sun angles). Also, purposes that a crater

ounter has also played a significant role in crater counting. A bet-

er understanding of this mechanism will shed light on the ef-

ect of human crater counting processes on crater count equilib-

ium. We will conduct detailed investigations and construct a bet-

er methodology for characterizing this effect. 
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. Conclusion 

We developed an analytical model for addressing the crater

ount equilibrium problem. We formulated a balance condition be-

ween crater accumulation and crater degradation and derived the

nalytical solution that described how the crater count equilibrium

volves over time. The degradation process was modeled by using

he degradation parameter that gave an efficiency for a new crater

o erase old craters. This model formulated cookie-cutting, ejecta-

lanketing, and sandblasting to model crater count equilibrium. 

To formulate the degradation parameter, we considered the

lope functions of the ratio of one crater to the other for the fol-

owing cases: if the size of newly emplaced craters was smaller

han that of old craters, ejecta-blanketing and sandblasting were

ominant; otherwise, ejecta-blanketing and cookie-cutting mainly

rased old craters. Based on our formulation of the degradation pa-

ameter, we derived the relationship between this parameter and a

tting function obtained by the empirical data. If the slope of the

rater production function was higher than 2, the equilibrium state

as independent of the crater production function. We recovered

he results by earlier studies that the slope of the equilibrium state

as always independent of the produced crater CSFD. If the phys-

cal processes were scale-dependent, the slope deviated from the

lope of 2. 

Using the empirical results of the Sinus Medii region and

he Apollo 15 landing site on the Moon, we discussed how

ur model constrained the degradation parameters from observed

rater counts of equilibrium surfaces. We assumed that the ejecta-

lanketing process was negligible. This exercise showed that this

odel properly described the nature of crater count equilibrium.

urther work will be conducted to better understand the slope

unctions of the degradation parameters, which will help us do

alidation and verification processes for both our analytical model

nd the numerical cratered terrain model CTEM ( Richardson, 2009;

inton et al., 2015 ). 
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